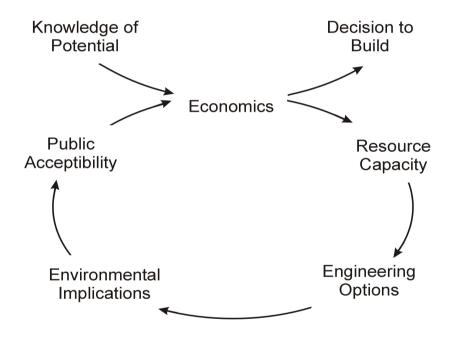
Cost Benefit Analysis

Prof Bob Rothschild


Management School Lancaster University

Framework

Economics - ties all components together.

Small-scale Hydro Schemes: Less than 10-15 MW

Viability of a potential project

- Net Present Value (NPV)
- Internal Rate of Return (IRR)
- Payback Period

Length of the project – 20, 30, 40 years Discount rate – 8%, 10%, 12%

Annual revenue – (energy tariffs -no coherency)
Energy production – different scenarios

- Own use
- Off grid production
- Selling to the grid

Example:

Small-scale Hydro Production Schemes: (Good Energy)

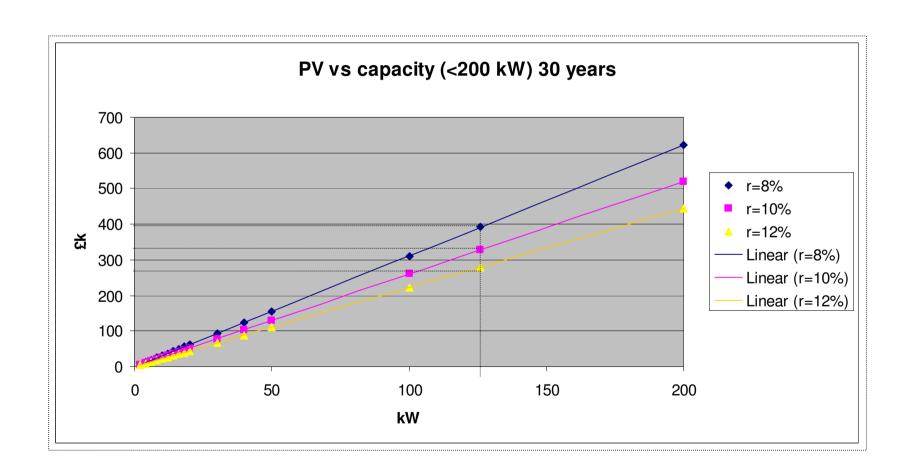
- □ P < 5 KW
- Off grid production
- □ 5 kW < P < 75 kW
- □ P > 75 kW

Examples:

Present Value (PV) (30 years)

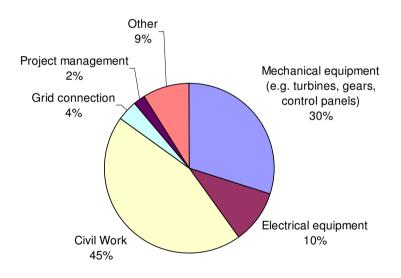
NPV=PV-IC ≥ 0, where IC - Investment Costs

Price - 9 p/kWh



Advice on the total budget figure

Capacity (kW)	PV (r=8%) £k	PV (r=10%) x £k	PV (r=12%) x £k
2	6.2	5.2	4.4
4	12.4	10.4	8.9
6	18.6	15.6	13.3
8	24.9	20.8	17.8
10	31.1	26.0	22.2
12	37.3	31.2	26.7
14	43.5	36.4	31.1
16	49.7	41.6	35.6
18	55.9	46.8	40.0
20	62.1	52.0	44.4
30	93.1	78.0	66.7
40	124.3	104.1	88.9
50	155.3	130.1	111.1
100	310.6	260.1	222.3
126	391.4	327.8	280.1
200	621.3	520.3	444.6
400	1242.6	1040.5	889.1



Engineering costs

- Capital Costs
 - Sunk
 - Fixed
 - Site non-specific
 - Site specific
- Maintenance & Operation Costs
 - Various (~ 4% of Total project cost)

Capital Costs of a Small-scale Hydro Plant

Environment related costs

- Minimisation of flooded land
- Tareine options:

 'fish-friendly'
 Maintaining minimal river flow;
 reduction of hoise
- Fish-bypasses, fish ladders;
- □ Eggiermentatenairenmanntonised intermediation in the second i
- Sound isolation;
- Planting trees;
- Abstraction licence.

Public acceptability issues

the impact upon the local built and natural environment

- Regiretempteriels deproyented
- Twetbsenviceanmentrials and the state of the
- Infrastructure development;
- ு ஹோழாடிர் தித்தித் projects.
 - 'fish-friendly'
 - reduction of noise

Financing

Example:

Total Project Costs - £500,000

Internal Rate of Return (IRR)

Annual revenue - £30,000 -> **IRR<5%** Annual revenue - £50,000 -> **IRR~10%**

20% - private investment10% - self financing

Payback period

Ideal scenario – (energy production stays the same)>10 years

Cost benefit analysis

The two following presentations:

- The case study (Heron Corn Mill hydro project);
- Financing a small hydro scheme

